Supporting information for:

A Novel Strategy for the Synthesis of ω-Functionalized Perfluoroalkyl Iodides

Zoltán Szlávik, Gábor Tárkányi, Zsolt Skribanek, Elemér Vass and József Rábai*

General experimental conditions: All structures were verified by one- and two-dimensional NMR experiments using recent assignment strategies that allowed a so called ab initio structure determination. Two-dimensional experiments involved both homo- (19F-19F) and hetero-nuclear (¹H-¹³C, ¹⁹F-¹³C) correlations based on the GMQFCOPS and inverse ¹H and/or ¹⁹F detected GHSQC, GHMQC sequences employing broadband adiabatic ¹³C-decoupling. The ¹H-, ¹³C- and ¹⁹F-NMR measurements were carried out at 30°C in CDCl₃ and CD₃COCD₃ on a Varian INOVA-500 spectrometer (operating at 500 MHz for ¹H) equipped with a waveform generator, using a ¹H{¹³C, ¹⁵N} PFG-triple resonance 5mm probe tunable for 19 F. 1 H and 19 F chemical shifts are given relative to δ_{TMS} =0.00 ppm, δ_{CFCI3} =0.00 ppm, where TMS and CFCl₃ were used as internal standards. ¹³C chemical shifts are reported by recording broadband ¹H or ¹⁹F decoupled spectra and are referenced relative to the solvent 13 C-shifts δ_{CDCl3} =77.00 ppm and $\delta_{CD3COCD3}$ =29.92 ppm. Both broadband 19 F- and 13 Cdecoupling and bandselective ¹⁹F decoupling was performed by adiabatic decoupling using the WURST¹ decoupling sequence. For ¹H-¹⁹F heteronuclear NOE difference experiments 15 s continuous wave low power preirradiation time was used. GC analyses were performed on a Hewlett-Packard 5890 Series II instrument equipped with a PONA (crosslinked methylsilicone gum, 50 m x 0.2 mm x 0.5 μm) column, using H₂ carrier gas and FID detection.

2.2.3.3.4.4.5.5.6.6.7.7.8.8.9.9-hexadecafluoropentadec-10-en-1-ol, (Z+E)-**2.** Colorless oil of 93.6 % purity by GC. Analytical data for **2**: ${}^{I}H$ -NMR [($CD_{3})_{2}CO$]: 0.95 t [H-15:Z]; 0.96 t [H-15:E]; 1.39–1.47 m [H-14:Z+E]; 1.63 m [H-13:Z]; 1.64 m [H-13:E]; 2.49–2.60 m [H-12:Z]; 2.56–2.67 m [H-12:E]; 4.14 t [H-1:Z+E]; 5.25 t and 2.91–2.97 s, br (OH and H₂O proton exchange: Z+E). ${}^{19}F$ -NMR [($CD_{3})_{2}CO$]: -113.5 tm [F-11:Z]; -114.3 m [F-9:Z]; -116.4 m [F-9:E]; -121.1 \rightarrow -121.6 m [F-4, F-5, F-6 and F-7:Z+E]; -121.3 tm [F-2:Z+E]; -122.8 m [F-3,F-8:Z]; -122.9 m [F-3:E]; -123.5 m (2F) [F-8:E]; -135.8 dm (${}^{3}J_{(FF)}$ = 132.6 Hz) [F-11]; -157.7 m [F-10:Z]; -172.4 dm (${}^{3}J_{(FF)}$ = 132.6 Hz) [F-10:E]. FT-IR (liquid film) v (cm^{-1}): 3367 (OH); 2968, 2941 (CH_{as}); 2880 (CH_s); 1724 (C=C); 1213, 1151 (CF). MS (EI): (m/z, I, M-X) 550, 6, M; 530, 71, M-HF; 510, 79, M-HF-HF; 500, 100, M-F-CH₂OH; 491, 40, M-HF-HF-F; 471, 23, M-HF-HF-HF-F; 343, 20; 293, 23; 281, 30, M-H(CH₂)₄CF=CF(CF₂)₃; 231, 37, (CF₂)₄CH₂OH; 181, 66, (CF₂)₃CH₂OH; 169, 95, H(CH₂)₄CF=CFCF₂; 149, 60; 131, 97, (CF₂)₂CH₂OH; 119, 88, H(CH₂)₄CF=CF. HR-MS: 550.06111, C₁₅H₁₂F₁₈O, 1.9 ppm.

Ozonation in methanol solvent

Silver 10-hydroxy-2.2.3.3.4.4.5.5.6.6.7.7.8.8.9.9-hexadecafluorodecanoate (4). In a glass reactor with appropriate gas inlet and outlet (Z+E)-2 (9.60 g, 17.5 mmol) was dissolved in methanol (100 mL)and cooled to 0 °C. Dry oxygen gas was bubbled through the system for 30 min, then the ozone generator, operating at a yield of approximately 1 g/h ozone (CAUTION!), was switched on for 5 h. Then reactor was then purged successively with O_2 and O_2 to remove ozone residues. The methanol solution after a 5 h reaction period had the following product ratios (GC integrated areas): O_2 3a/Bu-COOMe/ O_2 = 35:50:12. O_2 and O_3 and O_4 were identified later. To this mixture KOH (2.60 g, 39.4 mmol) was added in portions and the solution was stirred at room temperature for 2 h. A solution of AgNO₃ (4.00 g, 23.5)

mmol) in 400 ml distilled water was added to the reaction mixture applying intensive stirring, which was extracted with diethyl ether (2 x 200 mL). The ether phase was washed twice with distilled water, separated, dried over Na₂SO₄ and the solvent was removed by rotary evaporation. The crude product was boiled with isooctane, filtered and dried to obtain **4** as a colorless powder (5.37 g, 53 %). Analytical data for **4**: ${}^{1}H$ -NMR [(CD₃)₂CO]: 4.14 t (2H) (${}^{3}J_{\text{(HF)}} = 14.5 \text{ Hz}$) [H-10]. ${}^{19}F$ -NMR [(CD₃)₂CO]: -114.1 m (2F) [F-2]; -120.9 m (2F) [F-4]; -121.3 m (6F) [F-9, F-6 and F-5]; -121.5 m (2F) [F-7];-121.7 m (2F) [F-3];-122.9 m (2F) [F-8]. ${}^{13}C$ -NMR [(CD₃)₂CO]: 60.0 (C-10); 111.8 (C-2); 112.1 (C-6 and C-5); 112.2 (C-7 and C-3); 112.3 (C-4); 112.6 (C-8); 117.3 (C-9); 162.6 (C-1). FT-IR (KBr) v (cm⁻¹): 1681 (C=O₈, COOAg); 1613 (C=O₈, COOAg); 1203, 1145 (CF).

(*Z*)-2.2.3.3.4.4.5.5.6.6.7.7.8.8.9.9-hexadecafluoropentadec-10-en-1-ol, (*Z*)-2. The solvent of the remaining mother liquor (*vide supra*) was removed and the oily residue was purified by short path distillation collecting the main fraction at a bath temperature of 140-160 °C (0.1 mmHg) [(*Z*)-2, 1.41 g, 15 %, 94.9 % purity by GC]. Analytical data for (*Z*)-2: ${}^{1}H$ -*NMR* [(*CD*₃)₂*CO*]: 0.95 t (3H) [H-15]; 1.42 m (2H) [H-14]; 1.63 m (2H) [H-13]; 2.54 m (2H) [H-12]; 4.14 t (2H) (${}^{3}J_{\text{(HF)}} = 14.5 \text{ Hz}$); 5.25 t and 2.91–2.97 s, br (-OH and H₂O proton exchange:). ${}^{19}F$ -*NMR* [(*CD*₃)₂*CO*]: -113.4 tm (1F) [F-11]; -114.3 m (2F) [F-9]; -121.1 \rightarrow -121.6 m (8F) [F-4, F-5, F-6 and F-7]; -121.3 tm (2F) [F-2]; -122.8 m (2F) [F-3]; -122.9 m (2F) [F-8]; -157.7 m (1F) [F-10]. ${}^{13}C$ -*NMR* [(*CD*₃)₂*CO*]: 13.9 (C-15); 22.6 (C-14); 27.8 (C-12); 28.8 (C-13); 60.6 (C-1); 112.0 (C-3); 112.0, 112.1 and 112.2 (C-4,5,6 and C-7); 112.6 (C-8); 113.0 (C-9); 117.3 (C-2); 135.6 (C-10); 157.8 (C-11). *FT-IR* (liquid film) v (cm⁻¹): 3372 (OH); 2966, 2941 (CH₃»); 2880 (CH₃); 1722 (C=C); 1213, 1151 (CF).

Methyl 10-hydroxy-2.2.3.3.4.4.5.5.6.6.7.7.8.8.9.9-hexadecafluorodecanoate (**3a**). Silver salt **4** (0.300 g, 0.515 mmol) was dissolved in diethyl ether (20 mL) and stirred with iodomethane (0.300 g, 2.11 mmol) for 1 h at room temperature. The AgI precipitate formed during the reaction was filtered off and the solvent residue was removed by rotary evaporation to produce colorless crystalline solid **3a** (0.207 g, 82 %, 98.5 % purity by GC, mp 33-36 °C).

Analytical data for 4: ${}^{1}H$ -NMR [(CD₃)₂CO]: 4.09 s (3H) [COOCH₃]; 4.16 t (2H) (${}^{3}J_{\text{(HF)}}$ =14.5 Hz) [C-10]; 5.27 s, br (1H) [OH]. ${}^{19}F$ -NMR [(CD₃)₂CO]: -118.2 m (2F) [F-2]; -121.2 m (2F) [F-4]; -121.3 m (6F) [F-9, F-6 and F-5]; -121.5 m (2F) [F-7];-121.4 m (2F) [F-3];-122.9 m (2F) [F-8]. ${}^{13}C$ -NMR [(CD₃)₂CO]: 55.9 (COOCH₃); 60.7 (C-10); 109.2 (C-2); 111.5 (C-3); 112.0 (C-6, C-5 and C-4); 112.2 (C-7); 112.6 (C-8); 117.3 (C-9); 159.4 (C-1). FT-IR (KBr) $V(cm^{-1})$: 3432 (OH); 2970 (CH) 1782 (C=O); 1204, 1148 (CF). MS (EI): (m/z, I, M-X) 491, 100, M+H; 477, 15; 471, 8, M-F; 460, 11, M-CH₂O; 451, 12, M-F-HF; 131, 15, (CF₂)₂CH₂OH; 59, 7, CH₃COO; 31, CH₂OH. HR-MS: 490.00708, C₁₁H₆F₁₆O₃, 1.9 ppm.

Ozonation in trifluoroethanol solvent

Trifluoroethyl 10-hydroxy-2.2.3.3.4.4.5.5.6.6.7.7.8.8.9.9-hexadecafluorodecanoate (3b). Colorless solid of mp 53-55 °C. Analytical data for 3b: ${}^{I}H$ -NMR $[(CD_3)_2CO]$: 4.16 t (2H) (${}^{3}J_{(HF)} = 14.5 \text{ Hz}$) [H-10]; 5.13 s, br (1H) [OH]; 5.19 q (2H) (${}^{3}J_{(HF)} = 8.5 \text{ Hz}$) [CF₃CH₂]. ${}^{19}F$ -NMR $[(CD_3)_2CO]$: -73.6 m (3F) [CF₃CH₂]; -118.1 m (2F) [F-2]; -121.0 m (2F) [F-4]; -121.2 m (2F) [F-9]; -121.3 m (4F) [F-5 and F-6]; -121.4 m (2F) [F-7]; -122.2 m (2F) [F-3]; -123.9 m (2F) [F-8]. ${}^{13}C$ -NMR $[(CD_3)_2CO]$: 60.7 (C-10); 64.2 (CF₃CH₂O); 109.2 (C-2); 111.4 (C-3); 112.0 (C-4, C-5 and C-6); 112.2 (C-7); 112.6 (C-8); 117.3 (C-9); 123.7 (CF₃); 157.7 (C-1). FT-IR (KBr) v (cm^{-1}): 3001 (CH); 1800 (C=O); 1202, 1144 (CF). MS (EI): (m/z, I, M-X) 558, 2, M; 539, 15, M-F; 528, 21, M-CH₂O; 519, 13, M-HF-F; 508, 5, M-CH₂OH-F;

489, 6, M-CF₃; 363, 4; 131, 54, (CF₂)₂CH₂OH; 127, 37, CF₃CH₂OOC; 83, 64, CF₃CH₂; 31, 100, CH₂OH. *HR-MS*: 557.98764, C₁₂H₅F₁₉O₃, 10 ppm.

Silver(I) 10-hydroxy-2.2.3.3.4.4.5.5.6.6.7.7.8.8.9.9-hexadecafluorodecanoate (4). The treatment of **3b** (5.00 g, 8.96 mmol, 92.0 %) with KOH (0.57 g, 8.63 mmol) in methanol (50 mL) at room temperature, and the isolation of silver salt **4** after the addition of AgNO₃ solution (2.50 g, 14.7 mmol in 400 mL distilled water) followed by further purification steps, were carried out the same way as described previously (4.01 g, 77 %).

Silver 10-acetoxy-2.2.3.3.4.4.5.5.6.6.7.7.8.8.9.9-hexadecafluorodecanoate (5). A mixture of 4 (4.45 g, 7.63 mmol) and acetic anhydride (18.5 mL, 20.0 g, 0.196 mol) was heated for 4 h at 100-110 °C applying by-pass argon flow. The volatile components were removed at the same temperature under reduced pressure (approx. 20 mmHg, then 0.1 mmHg). The residual material was boiled with isooctane, filtered and dried (5, 4.61 g, 97 %). Analytical data for 5: ${}^{1}H$ -NMR [(CD₃)₂CO]: 2.16 s (3H) [CH₃]; 4.78 t (2H) (${}^{3}J_{(HF)}$ = 14.5 Hz) [H-10]. ${}^{19}F$ -NMR [(CD₃)₂CO]: -114.1 m (2F) [F-2]; -118.9 m (2F) [F-9]; -120.9 m (2F) [F-4]; -121.3 m (6F) [F-7, F-6 and F-5]; -121.7 m (2F) [F-3];-122.8 m (2F) [F-8]. ${}^{13}C$ -NMR[(CD₃)₂CO]: 20.2 (CH₃); 60.0 (C-10); 111.7 (C-2); 112.0, 112.1 (C-8, C-7, C6 and C-5); 112.2 (C-3); 112.3 (C-4); 116.1 (C-9); 162.6 (C-1); 169.8 (C=O ester). FT-IR (KBr) v (cm⁻¹): 1760 (C=O ester); 1685 (C=O_{as}, COOAg); 1614 (C=O_s, COOAg); 1205, 1146 (CF).

9-Iodo-2.2.3.3.4.4.5.5.6.6.7.7.8.8.9.9-hexadecafluorononyl-(1) acetate **(6).** In a 150 mL volume sealed Pyrex tube the mixture of powdered **6** (4.10 g, 6.56 mmol) and iodine (2.50 g, 9.85 mmol) was heated for 24 h at 100 °C in an oven. The tube was cooled down to -78 °C and opened carefully. The organic components were extracted with diethyl ether at room

temperature, and the ether phase was washed with dilute NaHSO₃ solution, twice with water, separated and dried over Na₂SO₄. The solvent was removed and the crude product **6** was purified in a short path distillation apparatus (120-140 °C bath temperature at 0.1 mmHg, 3.08 g, 78 %, 93.2 % purity by GC). Analytical data for **6**: ${}^{I}H$ -NMR (CDCl₃): 2.14 s (3H) [CH₃]; 4.57 t (2H) (${}^{3}J_{\text{(HF)}}$ = 13.5 Hz) [H-1]. ${}^{I9}F$ -NMR (CDCl₃): -59.4 m (2F) [F-9]; -113.5 m (2F)

[F-8]; -120.0 m (2F) [F-2]; -121.3 m (2F) [F-7]; -122.2 m (2F) [F-5 and F-6]; -122.3 m (2F) [F-4]; -123.8 m (2F) [F-3]. ¹³C-NMR (CDCl₃): 20.1 (CH₃); 59.5 (C-1); 93.3 (C-9); 108.6 (C-8); 109.9 (C-7); 110.8 (C-5 and C-6); 111.0 (C-3 and C-4); 114.6 (C-2); 169.2 (C=O). FT-IR (liquid film) v (cm⁻¹): 2974 (CH); 1769 (C=O); 1214, 1152 (CF). MS (EI): (m/z, I, M-X) 600, 10, M; 581, 4, M-F; 573, 3; 541, 1, M-CH₃COO; 473, 23, M-I; 177, 2, CF₂I; 153, 3; 131, 4; 73, 9; 61, 25; 43, 100, CH₃CO. HR-MS: 599.90971, C₁₁H₅F₁₆IO₂, 3 ppm.

11-Iodo-2.2.3.3.4.4.5.5.6.6.7.7.8.8.9.9-hexadecafluoro-eicosyl-(1) acetate (7). In a predried, argon purged reaction flask **6** (1.00 g, 1.67 mmol), 1-undecene (0.309 g, 2.0 mmol) and AIBN (0.02 g) were mixed and heated at 75 °C for 4 h applying by-pass argon flow. The product was purified using short path fractional distillation (bath temperature 170-190 °C/0.1 mmHg) to obtain oily product **8** (1.12 g, 89 %, GC pure). Analytical data for **7:** ^{I}H -NMR (CDCl₃): 0.88 t (3H) [H-20]; 1.22–1.59 m (14H) [H-13, 14, 15, 16, 17, 18, 19]; 1.72–1.88 m (2H) [H-12]; 2.14 s (3H) [OCCH₃]; 2.70–2.98 m (2H) [H-10]; 4.33 m (1H) [H-11]; 4.57 t (2H) ($^{3}J_{(HF)}$ = 14.0 Hz) [H-1]. ^{19}F -NMR (CDCl₃): -112.2 dm (1F) and -114.9 dm (1F) ($^{2}J_{(FF)}$ = 270.2 Hz) [F-9]; -120.0 m (2F) [F-2]; -122.0 m (2F) [F-7]; -122.3 m (6F) [F-4, F-5 and F-6]; -124.1 m (2F) [F-8];-123.8 m (2F) [F-3]. ^{13}C -NMR (CDCl₃): 14.0 (C-20); 20.1 (OCCH₃); 20.8 (C-11); 22.6 (C-19); 28.5, 29.3, 29.4, 29.5 and 29.6 (C-13, 14, 15, 16 and C-17); 31.9 (C-18); 40.4

(C-12); 41.8 (C-10); 59.5 (C-1); 110.7 (C-8); 110.9 (C-5 and C-6); 111.0 (C-3 and C4); 111.2 (C-7); 114.6 (C-2); 118.0 (C-9); 169.2 (C=O). *FT-IR* (liquid film) v (cm^{-1}): 2928 (CH_{as}); 2857 (CH_s); 1770 (C=O); 1212, 1151 (CF). *MS* (*EI*): (m/z, I, M-X) 754, 95, M; 668, 17, M-C₆H₁₄; 627, 100, M-C₉H₁₉; 585, 30, M-C₉H₁₉-CH₂CO; 571, 49, M-C₁₀H₂₁-CH₂CO; 557,25; 528, 19; 85, 30, C₆H₁₃; 71, 20, C₅H₁₁. *HR-MS*: 754.08101, C₂₂H₂₇F₁₆IO₂, 1.3 ppm.

¹ Kupče, E.; Freeman, R. J. Magn. Reson. A 1995, 115, 273.